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Noise and slow-fast dynamics in a three-wave resonance problem
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Recent research on the dynamics of certain fluid-dynamical instabilities shows that when there is a
slow invariant manifold subject to fast time-scale instability the dynamics are extremely sensitive to
noise. The behavior of such systems can be described in terms of a one-dimensional map, and previous
work has shown how the effect of noise can be modeled by a simple adjustment to the map. Here we un-
dertake an in-depth investigation of a particular set of equations, using the methods of stochastic in-
tegration. We confirm the prediction of the earlier studies that the noise becomes important when
w|lne|=0(1), where u is the small time-scale ratio and € is the noise level. In addition, we present de-
tailed information about the statistics of the solution when the noise is a dominant effect; the analytical
results show excellent agreement with numerical simulations.

PACS number(s): 02.50.—r, 05.45.+b, 47.52.+j, 64.60.Ht

I. INTRODUCTION

In many circumstances, a low-order system of ordinary
differential equations (ODE’s) serves as a useful model for
a physical system. A difficulty arises, however, if the
solutions are noticeably affected by small external noise.
This is the case in several systems of physical interest
sharing the characteristic that their solutions consist of
alternating slow and fast phases [1-3]. In this paper we
take as our example the following third-order system of
ODE’s describing the resonant interaction of three wave
modes when one mode is unstable and the other two are
damped [4-6]:

)'c=,u,x—52—y2+222 s
y=ylx-—1), (1)
z=puz+o6x —2xz .

When p is small the character of solutions of (1) is
dramatically changed by tiny amounts of additive
noise—the bifurcation structure with a full gamut of
periodic orbits and chaotic regions is replaced by a noisi-
ly periodic orbit across a wide range of parameter values
(Fig. 1). The quantity u is the ratio of the instability of
the unstable mode (its exponential rate of growth in the
absence of interaction) to the damping rates of the other
two modes (assumed equal) [7].

It is possible to describe the dynamics of (1) in terms of
a one-dimensional map. As shown in [1], analytical ex-
pressions can be obtained for this map by assuming that
the solutions consist of alternating slow and fast phases
and solving approximations to (1) in each phase (Fig. 2).
In the slow phase the system is close to the invariant line
y =0 and moves slowly from the region where the invari-
ant line is attracting (x < 1) to the region where it is re-
pelling (x > 1). This phase is occasionally interrupted by
a fast phase which reinjects the system close to the at-
tracting part of the line. It is in the slow phase that the
sensitivity to noise arises.

Here we use a stochastic differential equation to calcu-
late the adjustment to the map of Hughes and Proctor [1]
necessary to describe the dynamics of the slow phase in
the presence of additive white noise. The smallness of u
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FIG. 1. Bifurcation diagrams with and without noise for
©n=0.01. The graphs are obtained from numerical simulation of
(1) and each dot represents a turning point of x. The top graph
is obtained with no added noise; the bottom graph with very
small noise (rms) magnitude e=1071°) added to the variable y.
The noiseless bifurcation structure including chaotic regions is
replaced by a noisily periodic orbit for § < 1.5.
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is responsible for the division of the dynamics into two
phases and the sensitivity to noise. In this paper, all cal-
culations are done to lowest order in u.

The map we use is a map of successive turning points
of x. In the presence of noise the turning point of x
which defines the end of the slow phase is a random vari-
able x,,,,. In the heuristic model of Hughes and Proctor
[1], the noise determines x,, if u|lne| < O(1), where € is
the rms noise level, and x,,, is estimated by assuming
that |y|=0(e) at x =1. The value of x,, calculated in
this manner is O(1) less than the corresponding deter-
ministic value.

In this paper, we extend the treatment of Hughes and
Proctor using a stochastic differential equation to de-
scribe the slow phase. We derive explicit expressions for
the probability distribution of x ,,, and for the condition
on ul|lne| which marks the transition to the noise-
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FIG. 2. The one-dimensional map. (If x =0 at x =x, then
the next value of x for which X =0is x,.) In the top figure the
solid line is the formula of Hughes and Proctor [1] for u=0.01
and §=0.5. The dots are obtained from numerical solution of
(1). The same map is shown below with a flat top due to noise.
The two lines in the flat top are {xp..) +o,,  and

(Xmax)—0y , calculated as described in the text with
max

€=1071° and the dots are numerical results with white noise of
magnitude 107 '° added to the variable y.
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controlled regime. In this regime, the probability distri-
bution of x,, is log normal with standard deviation pro-
portional to p. For small u, our calculations predict ac-
curately the results of numerical solutions of (1) with
low-level noise added to the variable y. The numerical re-
sults presented here were obtained using a simple exten-
sion of the Heun (second-order Runge-Kutta) method for
integrating ODE’s to include additive white noise [8,9].
The increment to y at each step includes a Gaussian ran-
dom variable proportional to € and to the square root of
the time step.

Slow-fast dynamics similar to those of the three-wave
resonance system are relevant in other contexts. Our re-
sults are presented in such a way that they can be easily
generalized. In the Appendix we show how a generic
slow phase is reduced to a problem taken from dynamic
bifurcation theory, and summarize some results for this
case.

II. SLOW PHASE WITH AND WITHOUT WHITE NOISE

The slow phase of (1) is defined as beginning when the
following are true:

yi<<p,
5
z—5+0(l~t) , (2)

Ou)<x<1.

We then find that (1) reduce to

x=pf(x)—y?,

y=yglx), (3)
L3} 8
Z=Stug
where
(x)=x +—8i
! e @)
gx)=x—1.

When the initial conditions (xy,yq,2,) satisfy (2) we ob-
serve the following.

(i) The variable y decreases exponentially until x =1
and then increases exponentially.

(ii) The variable x is the driving variable, evolving in-
dependently until the very end of the slow phase.

(iii) The remaining variable z is of secondary impor-
tance for x > O(u) because it is “slaved” to x (given as a
function of x).

Our strategy for determining x . is to take X =pf(x),
so that x is a function of time, and then solve for y as a
function of time. x_,, is then the value of x at which
y2=pf(x). The term —y? in the equation for X has a
small effect at the end of the slow phase for which we cal-
culate a correction.

In the presence of white noise y becomes a stochastic
process y, satisfying the stochastic differential equation

dy,=y,g(t)dt +edW, , (5)
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where g(z)=x(t)—1, € is a constant with 0 <€ <<u, and
W, is the Wiener process. Exact solution of (5) is possible
[10]:

»=Gl1,to) yote [/ ﬁ’to)dWs : ©)
where

G (t,ty)=exp ft;g'(u)du] . (7
The mean value of y,,

(y,)=G(t,ty)y, » (8)

is the solution in the limit e—0. The probability distri-
bution of y is Gaussian with standard deviation o, a
function of time given by

t 1

2 —(,2y__ 2 22
o, =)=y, 1?=€Gx1,1,) \ G2(s,t0)ds' 9

If x =1at t=t, then for t—¢,>O0(1/V')

o2=eV'maGit,t,) , (10)
where
1
= - 11
T (g () an

A. Deterministic limit

If 0, <<(y,) for x > 1 then the noise can be treated as
a small perturbation to the deterministic solution given
by (8) or by

¥ =Yyoexp —ﬁ[F(x)—F(xo)] , (12)
where
_ 4X2 o) —1 2x
F(x)=1In 1+~8§— —x+5tan 5 (13)

The probability distribution of x,, in this case is very
narrow and the mean value {x,,, ) satisfies

F(<xmax))_F(xo)::u'{lnyo_%ln[.uf(<xmax>)]} . (14)

B. Noise-controlled regime

If o, > (y,) for x > 1 then it is the noise rather than
the initial conditions which controls x_,.. In this case
the probability distribution of y for x >1 is Gaussian
with negligible mean and exponentially rising standard
deviation. Equation (10) corresponds to the fact that, for
t —t,>0(1/V'u), the path of any one realization is ap-
proximately deterministic (but starting from a level
which is random variable).

Knowing o, as a function of time, we can calculate the
probability that y? is greater than uf(x) at any time.
The probability distribution of x,, is the derivative with
respect to x of this probability. The probability that x .,
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lies between x and x +dx is therefore R (x)dx, where

—Vuf(x) —(»2/20%)
R =) y
(x) 3x Varo, f~w e dy
- 2__ g(x) \/’u,f(x)e*[uf(x)ﬂaﬁ]
V2r uf(x) o )

(15)
y

The maximum value of R(x) is at x =X where X is
defined by the condition \/uf(&‘):ay. (Both x and o,
are functions of time.) Thus X satisfies

VifG) gy (16)
exp ff%du
or equivalently
F(1)—F(%)=pl|Ine| +fziln[pf<9c >]~%1n(wa) .oan

At the very end of the slow phase the simple relationship
x =uf(x) breaks down because y? is no longer negligible.
We obtains a more accurate expression for the most prob-
able value of x,, by replacing X by X, =X —AX where

o [Tmx pdt 1 pf(R)
AR fl i dx = 28 (18)

We exhibit the probability distribution of x_,, by
defining the random variable v as

g(x,)
wf(®)

The probability that v lies between v and v +dv is R (v)dv,
where

R‘(U)2 _z__eve~(1/2)92” , (20)

— 2

V= _(xmax_xc)

(19)

which is the log-normal distribution (the probability dis-
tribution of the log of a Gaussian random variable with
unit variance). Explicit expressions for the mean and
variance of v exist:

(v)=—Hy+In2), 1)

where ¥y =0.577. . . (Euler’s constant) and
2
(vz)—<v)2=—7;—, (22)

so the mean and standard deviation of x,, in the noise-
controlled regime are given by

(%)
R +L#fx

(X pax ) =%, (y +1n2) (23)
X 2 g(x,) v
and
—((+2 N_ w2 T pf(x) 24
oy TUX ) = (e )?) Vi gz (24)

Each value of x, for —1+0(Vu)<x,<1 in Fig. 2
corresponds to a set of initial conditions for the slow
phase [1]. The value taken for x, is the lower of the two
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values given by (14) and (23). When the noise-controlled
value (23) is the lower, we plot (x.,)+o, and

ax
(Xmax? —0, . For the purposes of Fig. 2, the transition
max
from the noise-controlled to the deterministic regime is
sufficiently rapid that it is unnecessary to consider the
transition region. In the next section, however, we derive
a more general formula for the probability distribution of
x

max*

C. A more general formula

We express the relative magnitudes of the deterministic
and noise-driven parts of y, via the parameter ¢ defined as

=<|yt1>

9y

which is constant for  —¢,>O(1/Vn) (10). The noise-
controlled regime corresponds to 0 <c¢ <<1 and the deter-
ministic limit to ¢>>1. The condition c¢<1 for
t—t,>0(1/u) can be taken as a test of whether the
noise-controlled regime is in force. This condition is

c (25)

pllne| <F(1)—F(xy)+pu[+In(ra)—Iny,] . (26)

A more general formula for R (x) is obtained by allow-
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FIG. 3. The effect of noise on the probability distribution of
Xmax- Numerically obtained probability distributions of X,
with £ =0.01 and §=1.0. The smooth curve in each case is the
function R (x) (27) which reduces to (15) in the noise-controlled
regime.
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ing the probability distribution of y for x >1 to have
nonzero mean. Thus

d 1 Vufx) (y—{(y))?
R _—— _—— d
(x) dx \/27ra'y f—\/uf(x)ex 20')2, 7
1 [ —(1/2)u—c)? —(1/2)(u+c)2] g(x)
~ — -+ =
Vg i ¢ ¢ wfx)
27
where
u= YL (28)
g
y

This probability distribution is compared with numerical
results for £=0.01 in Fig. 3. In the limit ¢ —0 we find
the log-normal distribution of the noise-controlled re-
gime. For large ¢ we regain the deterministic regime
(narrow, Gaussian distribution of x,, ).

Our results are exact for small u and §-function initial
conditions. To produce Figs. 3 and 4 we take the initial
conditions from the corresponding deterministic orbit.
This gives excellent agreement in the noise-controlled re-
gime, where x_,, is independent of initial conditions, and
gives the correct large-c limit for {x,,,). However the
standard deviation Ox is underestimated for nonzero ¢

2.2 . . : ,
1.8
x [ numerical results:
1.4 N p=0.1 -
o p=0.01
o ©=0.001
1.0 L n N L
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0.0010 numerical results:
2 A p=0.1
[ ° 14=0.01
0.0001 E o 14=0.001 -
L L
0.0 . R 0.6 0.8 1.0

—plne

FIG. 4. Mean and standard deviation of x,,,, as a function of
pllne|. The curves are predictions obtained from the explicit
form for the probability distribution of x,, (27) and some nu-
merical results are shown. The agreement between small-u cal-
culations and numerical results is good, even for u as large as
0.1. The “knee” in the graph of o, vs u]lne| corresponds to

the end of the noise-controlled regime.
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because the probability distribution of x,_,, is carried
through the fast phase, so the initial conditions for the
slow phase vary from cycle to cycle in the noisily periodic
orbit. The broadening of the probability distribution of
X max Produced by this is most noticeable in the transition
region between the noise-controlled and deterministic re-
gimes (e=10"'%in Fig. 3).

In Fig. 4 we compare numerical results for the most
probable value of x ., and the standard deviation of x,,
with values calculated using the explicit form of the prob-
ability distribution (27). The most probable value of x
we find from the (approximate) condition

u?=1+c?. (29)

max

This corresponds to {y?)=uf(x) and gives the correct
result in the large-and small-c limits. The standard devia-
tion of x,, can be written

T W)

o~ , 30
Ox 735 g) ) (30)

where f(x) and g(x) are evaluated at the most probable
value of x,,, #(0)=1 and, for large ¢, h(c)=1/(1+c?).
The form we have used for Ah(c) in Fig. 4 is
h(c)=1/(1+c?)+c% ~¢*/15) which we obtained as a fit
to numerical integration of (27).

III. CONCLUSION

Slow-fast dynamical systems such as the three-wave
resonance system discussed here are most conveniently
described in terms of a one-dimensional map. Low-level
white noise has an O(1) effect which can be calculated by
solving a stochastic differential equation. In the deter-
ministic limit x_,,, the turning point of x which defines
the end of the slow phase, is determined by the initial
conditions. In the noise-controlled regime, which is in
force when u|Ine| is less than an O(1) constant which de-
pends on initial conditions, x,,, is a random variable
with log-normal distribution and standard deviation pro-
portional to u.

We know of several other physical contexts which give
rise to noise-sensitive slow-fast dynamics. One is the
shear instability of tall thin convection cells [2,3]. Anoth-
er is pulsating laser oscillations [11,12] consisting of short
pulses separated by long periods of very small intensity.
A related problem is that of random perturbations of
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heteroclinic attractors [13], where noise controls the
length of time spent near an unstable fixed point, and a
stable homoclinic or heteroclinic orbit provides the rein-
jection.
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APPENDIX

In the three-wave resonance problem considered above,
the slow phase is defined by

x=puf(x),
dy,=g(x)y,dt+edW, ,

where f(x)=x+8%/4x and g(x)=x—1. We obtain a
system often studied in dynamic bifurcation theory [14] if
we put f(x)=1and g(x)=x. Then y, satisfies

(A1)

dy,=g(t)y,dt+edW, where g=put . (A2)

Suppose y =y, for some t =1, <0. [In the three-wave
resonance problem the natural choice is y,=0(V'u) and
—to=0(1).] The next value of g at which y =y, g,
defines a dynamic bifurcation point, occurring later than
the “static” bifurcation at g =0. In fact, in the deter-
ministic limit, §= —g(¢,).

The noise-controlled regime is in force if

pllne| < 1g2(to)+ulLIn(7/u)—Iny,] . (A3)

In this regime, g is a random variable with log-normal
probability distribution. The most probable value g is
then given by

g2=2pullne| + }ziln‘i— +2ulnp,

and standard deviation o, by

T 1

o =p—=—.
£ "2 p
In this form, our results appear consistent with results
obtained numerically [15], from an electronic-circuit
model of a ring laser [16], and with analytical results for
the laser threshold instability [17].
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